710 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL MTT-35, NO. 8, AUGUST 1987

Microstrip Dispersion Including
Anisotropic Substrates

BRIAN E. KRETCH, MEMBER, IEEE, AND ROBERT E. COLLIN, FELLOW, IEEE

Abstract — A perturbation-iteration solution based on potential theory is
developed for determining the effective dielectric constant, characteristic
impedance, and current—charge distribution on a microstrip transmission
line with isotropic and anisotropic substrates. The numerical implementa-
tion of the theory is described and is suitable for use on a personal
computer. Computed data for several common substrate materials are
included.

I. INTRODUCTION

HE DISPERSIVE properties of microstrip transmis-

sion lines have been described by a number of authors,
and this includes some work on anisotropic substrates as
well. A very popular approach is based on the expansion
of the fields in terms of hybrid (longitudinal section)
modes, the formulation of an integral equation in terms of
the unknown currents on the strip, and the solution of the
equation in the spectral domain using Galerkin’s method
[1]-[5]. For comprehensive reviews, see [6] and [7]. This
approach requires finding the roots of a transcen-
dental dispersion equation. For wide strips, the modified
Wiener—Hopf technique can be utilized quite effectively
[8]. The analysis of microstrip lines has also been carried
out using potential theory [9]-[11].

In this paper, we present a new perturbation-iteration
solution based on potential theory that leads to a very
efficient computation of the dispersive properties of a
microstrip line on isotropic or anisotropic substrates. The
initial development of the perturbation-iteration solution
for isotropic substrates was carried out as a thesis project
[12], [13] (an unfortunate sign error in the computer pro-
gram makes the numerical results given in [12] and [13]
increasingly inaccurate as the frequency is increased). The
theory presented in this paper is an improved version and
is also generalized to allow for anisotropic substrates. Our
potential theory includes the use of all three components
of the vector potential function, and this leads to a number
of simplifications in the final pair of uncoupled scalar
integral equations that must be solved.
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Fig. 1. A microstrip transmission line.

II. FiELD EQUATIONS

The microstrip line under consideration is shown in
Fig. 1. It consists of a conducting strip of width 2W
located on a substrate of thickness H on a ground plane.
Two conducting sidewalls are placed at x = 4+ A in order
to facilitate the analysis through use of Fourier series.
When numerical results are computed, A4 is set equal to
the larger of 15W or 15H, for which case the sidewalls
have a negligible influence on the characteristics of the
microstrip line. The substrate is assumed to be anisotropic
with a dielectric constant , in the direction perpendicular
to the substrate and « in the x and z directions. All field
quantities have a time dependence e/“' and a z depen-
dence e ™7 and these common factors are suppressed after
the basic equations have been developed.

The equations for the vector and scalar potentials are
developed initially by letting k, and « be functions of y.
An important feature of this approach is that it requires
the vector potential A4 to have all three components
A, A4,, A, In addition, we keep the scalar potential ¢ as
an explicit part of the solution. By including an 4 , COmMpo-
nent, all of the potential functions can be continuous
across the air-dielectric interface. In the potential theory
referred to carlier, 4, is chosen as zero with the conse-
quence that the potentials must all be discontinuous across
the air—dielectric interface [9]-[11]. Thus, the potential
theory that we use is a more natural one and leads to a
very efficient iterative theory for evaluating microstrip
dispersion. It also has the advantage of eliminating the
coupling between A4, and @ at the air-dielectric interface.

The dielectric constant tensor is represented as

1)

where I is the unit dyad. We let B=v X 4 and then from
Maxwell’s equation vV X E = — jov X 4 we obtain

©(y) =)+ [k, (»)—x(y)]a,a,

E=— jwd—-v0. (2)
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From the equation Vv X B = jwpgeok-E +pJ=v XV
X A we find, upon using (2), that

VV-A-VA= jweo,uo[— JokA = kv ®— jo(k,— k)
-A),ay——(xy—x)vfl)-ayay]+pLOJ

=kkid — jopew (k)

P
- (K'y - 'C) j‘*’l’«o‘o_(?; - k(z)Ay a,

dk
+ J“-’Ho‘o‘pa—y"y +pod.

The two gradient terms are now equated to yield the
conventional Lorentz condition and the following equa-
tions for the components of A:

VA= jopgeer(y)®
v 2’42 + Kk(%Az = p‘OJz

(32)
(3b)

(3¢)
dk

2 2 - ; 9o
VA, +k,kiA, = ”]wﬂofoq)b—);""]wﬂofo("y—")?y‘

v 2Ax + Kk(%Ax == “OJx

do
= jwuoco{(xy - ")a_y +@(H)(k=1)8(y - H)| (3d)

where we have taken the step change in x(y) at y=H
into account and put dk/dy=(1—«k)8(y— H), with
8(y — H) being the delta function. By using Gauss’s law
V-(k-E)=p/¢€qy, (2), and the Lorentz condition, the fol-
lowing equation for @ is obtained

[324) ahp} 9 9
K +

dx? dz2

04, A
T @
In (3) J, and J, are the components of the current density
on the microstrip, and in (4) p is the charge density. At the
air—dielectric interface, all of the potential functions are
continuous across the interface. In addition, dA4,/dy and
dA,/dy are also continuous across the interface. From the
differential equations (3d) and (4) we find, by integrating
over a vanishingly small interval along y centered on the
interface, that

o .
= ——E—+Jw(xy—l)ﬁ(y—H)Ay—]w(xy-—ic)
0

a4,|"
"5 ) = jopogo(k —1)@(H) (52)
ad|" a0 ad

Ky(y)g; I +—'€y‘5’_

p
-+ jo(s, —1)4,(H)
0

(5b)

where the negative sign refers to y just below the interface
and the postive sign refers to y just above the conducting
strip. In addition to these discontinuity conditions, the
boundary conditions on the perfectly conducting infinitely
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thin microstrip are
E,=0orwd,=pd
Jd
Ex=00r —ijx=—,———.
ax

One additional relationship that will be used comes from
integrating the continuity equation

(62)
(6b)

Ved=— jwp
across the strip from xX'= —W to W; it is
Blror = wQ (7)

where I;op is the total z-directed current and Q is the
total charge per unit length on the strip.
The integral of (6b) on the strip gives

o(x, H) = —jwfoxdx+~(I)(0,H)
0
which can be expressed in the form
€@(x,H)=1- jwuoeofxfw G(x,x")J (x)dx'dx (8)
0v-w

for 0 < x <W. In (8) we have set ®(0, H) equal to 1/¢,.
The second term in (8), involving the integral of J, and the
Green’s function G for (3c), is a small perturbation to the
boundary condition for @ since at the lower frequencies,
and in particular for narrow strips, J, is very small
Numerical computations show that even for extreme con-
ditions this term is not large. For example, for H =1 mm,
k =x,=10, and 2W =10H, this term represents no more
than a 50-percent decrease in the value of ® from x =0 to
x =W at 26 GHz. For all practical microstrip lines within
the useful frequency range, it is a much smaller perturba-
tion term and is treated as such in the iteration-perturba-
tion theory that is developed in this paper. For 2W/H =6
and k=12, J_ causes an 8-percent decrease in ® at x =W
for f =10 GHz. For narrower strips and smaller values of
the dielectric constant, the decrease is less. For 2W/H <1,
the effect of J_can be neglected, even at 20 GHz for H =1
mm,

I1L

The current J, and charge p can be represented by the
following Fourier series:

ForMaL SoLuTION

J(x)= Y Jcoswx (9a)

n=1,3.-.
p(x)= ). p,cosw,x (9b)
n=13.--
where
2
Jn=—f J,(x)cosw,xdx (10a)
a’o
2
pn=—f p(x)cosw,xdx. (10b)
avsp

At this point normalized dimensions have been introduced
so that W=1m, a=A/W, and a=H/W. Also, w,=
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nw/2a in (9) and (10). The potentials are also represented
by Fourier series in the form

[eo]
d= Y @ (y)cosw,x (11a)
n=13--
A, = Y, A4,(y)cosw,x (11b)
n=13---
o0
A,= _12; A, (y)cosw,x (11¢)

where the factor e /%7 has now been suppressed. The
equations for ® and 4, must be solved simultaneously. In
view of the boundary conditions that must hold at y =0,
we can assume that

®, = Csinhyy A,,=Dcoshyy y<a

and substitute these into (3d) and (4). It is then readily
found that solutions exist for two values of y given by

Y1, = (B?—kk2+w? 12 12a
n 0 n
o V172 12
Yan (K—) (ﬁz—Kykg-i-an) " (12b)
Y

The general solutions for @, and 4,, are now chosen as

C,sinhy,, y + Cysinhy,,y, y<a

n Cye™ Y, y=a
D, coshy,,y + D,coshy,,y, y<«

A_vn - Dye™ 7, yza

where
Y= (B2 —k2+w2)"”.

The potentials are continuous at y =« and satisfy the
discontinuity conditions given by (5). The use of these
boundary conditions and the requirement that the solu-
tions satisfy the coupled differential equations lead to the
solution

wl(n)w3(n)Sh3 (n)
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G, needed to solve for ® in terms of p after eliminating
Ay. When k=0, we have

M 4
p, sinhw o

€0, (a) = (15)

1 14 ’
W, (smh w,a’ + /KK, coshw,a )

where o« = (k/k)'/%a. The result shown in (15) expresses
the property that the potential ® for an anisotropic sub-
strate is the same as that for an isotropic substrate with
dielectric constant (xx,)/? and normalized thickness
o'[14]. However, A, is still the same as for a line with
normalized height « for the strip, so the zero frequency
inductance per unit length must be found for the unscaled
line. This can be expressed in terms of the capacitance of
the air-filled unscaled line.

The solution for 4,, is much easier to find and is, at

y=a
A = p‘OJanhZ(n)
" wi(n)Sh, (n)+wy(n)Ch, (n)

which reduces, for k, =0, to

(16)

sinh w,a

(17)

The coefficient of pyJ,, is the nth Fourier coefficient of
the Green’s function G; needed to solve for 4, in terms
of J,.

At y=aq, the Green’s functions G, and G, have the
representations

Azn = lu'()Jzne—wna

W,

1 o0
G,(x,x) = Y G,cosw,xcosw,x’, i=1,2,
n=13---

(18)

where G, is the coefficient of p,J,, in (16) or (17) and
G,,, is the coefficient of p, in (13) or (15).

The Fourier series solution for 4, can be found directly
from the Lorentz condition (3a), so J, does not need to be
solved for explicitly. An alternative procedure is to use the
continuity equation to find J,.

k%Shz(n) 0,

€®,(a) = wy(n)Sh, (n) + le(n)ch3 (n)

where the following shorthand notation has been intro-
duced:

wi(n) =1, Sh,(n) =sinhw,(n)a
wy(n)=v,, Ch,(n)=coshw,(n)a
wy(n) =y, i=1,2,3.
We also use
B?=rkk; (14)

where k, is the effective dielectric constant. The coefficient
of p, in (13) is the nth coefficient of the Green’s function

T (n)Sh, (1) + wy(n) Chy (n) | B2+ w2

(13)

IV. StaTic GREEN’S FUNCTIONS

In the iteration solution to be presented in the next
section, we will need the static Green’s functions G? and
G5. In this section, we sum the dominant or the singular
part of the series for the G? into closed form, which can
then later be integrated exactly as the dominant part of the
integral equations that will be set up for p and J,.

The static Green’s function G?, at y = a, is given by

*®  2c0sw,x cos w,x'(1— e~ 2"*)

D

n=1,3--

GY(x,x") = . (19)

nw
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The two series can be summed to give [15]
70 7 Ta bs
1 7 . 1 cosh — +cos 2—(x—x’) cosh — +cos = (x + x’)
a a a 2a
Gl=——1In tan—x—x’tan——|x+x’)———ln (20)
1 4o 4dl ‘ 4 a l 8 T o T T

We now assume that a is set equal to the larger of 15 or
15a, in which case a/a and (x £ x’)/a are small. Hence,
we can use the small argument approximations for the
cosine and hyperbolic cosine terms and also expand the
logarithm to obtain

G)=——In|x*—x"?|
4o

(R [0 e |

24a?
(21)
The dominant term in a/a has been retained in (21) in
order to determine how large a has to be before the
sidewalls have a negligible effect. The numerical results
verify the condition given after (20).
The static Green’s function G5 at y =« is given by

G9(x. x') i’i 2cos w,x cos w,x’sinh w,a’ (22)
25T p=t3... nm(sinhw,a’ + K coshw,a)

where k= (kx,)"/? and ' = (x /k,)"/%a. The above series
may be expressed in the form

® 208 w,xcosw,x’(1—e 2"
GO , N — " n .
2(xx') n=123,,, (K +1)nw(1+ne“2wn°‘)

where 1= (x, —1)/(n +1). We now expand the factor

cosh — ~cos — (x — x’) cosh — —cos —(x + x)
a 2a a 2a

sufficient, while for strips as wide as 104 and with k, =12,
a total of 45 terms were required.

V. SOLUTION BY ITERATION

In the iteration method the current and charge densities
and the effective dielectric constant &, are first found at
zero frequency. For this case €@ is set equal to 1 on the
strip, and A4,, /p, is also set equal to 1 on the strip, where
A,, is a reference value for the vector potential. The
integral equations to be solved are

2 fo 'G9(x, x') I, (x") dx’ =1 (24a)

ZfOIGg(x, x)p(x") dx’=1.

The current J, is expanded in terms of four basis functions
in the form

(24b)

7 Iy~ I,Ty(x)+ I,T,(x)
‘ ' V1—x?

where 7,(x) is a Chebyshev polynomial. A simple equiv-
alent power series in x2" was also tried but the resultant
matrix was ill conditioned in that case. By using the
Chebyshev polynomials, the matrix determinant was larger
by a factor of about 100. In the numerical evaluation, the

—I3T6(x)

(25)

(1+ ne~ 2w ) into a power series and can then carry out
the summation over n for each term to. obtain
7o’ 7
p c -1 cosh—,—+cos—(x—x’)
0 ’ 0 ror g a
G (x,x’) = GY(x,x",a')— 2{ -In -
Kk, +1 2a(k,+1)° | 2k, T o (x—
: g cosh cos ( x )
a 2a
e T o
cosh — +cos — (x + x’) w0 cosh(m +1)—+cos ;——(x—x’)
a 2a m .a 2a
X p— + 3 (=7)"In , ;

T
h— —cos — (x + x’
cosh—- —c 2a(x x')
X

The alternating series represents a correction to the domi-
nant part of G which is expressed in closed form. In the
numerical evaluation of the integral involving G7, it was
established that truncating the series when'the mth term
was smaller than 1073 times the sum of the first m —1
terms resulted in an insignificant error. For narrow strips
with k, less than 5, it is found that 8 to 10 terms are

m+1

o T
cosh (m +1)— —cos — (x — x')
a 2a

0 . o a )
—— —_ + /
cosh(m +1) ——+cos 2a(x x

(23)

7o’ T
cosh(m +1)— —cos — (x + x’)
a 2a

substitution x = sin# is made, in which case
J(x)dx=(I,+ I ,cos28 + I,cos4d + I,cos68) df. (26)

A similar expansion for p is used w1th coefficients Q.
n=0,1,2,3.
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By using the above expansion and substitution, we can
use the Schwinger transformation

/2|:

cos26 —00520"

In|sin*@ —sin*§’| = In 3

In|x?—x

© 2cos2nfcos2nl’

=—Ilnd4— )

n=1

(27)

which enables one to carry out the integrals in (24) analyti-
cally for the dominant parts of G and GJ. The remaining
integrals are evaluated numerically. Equations (24) are
converted to matrix equations by using point matching at
the four points x =sin(2i + 1)7/16, i =0,1,2, 3. Test cases
using Galerkin’s method and the method of least squares
were also evaluated with essentially the same results, so the
final computer program adopted used point matching since
it requires somewhat less computational effort. The
numerical results show that I, and Q, are smail and I,
and Q, are almost negligible so four basis functions are
sufficient.

After the expansion coefficients I, and Q, for p have
been found, the total current and charge on the strip are
given by I.=wl, and Q;=7Q, The total current is a
relative value, so we now multiply I by a constant K and
enforce the two conditions (6a) and (7) to obtain

we KA, = Be® =B =wpye K

and
BKI; = wQr
which then gives
2
'8—2 =K,= —Q—T- (28)
kg Ir
1/¢ VA
z,= L0 (29)

where Z = (pq/€4)/?=1207 @ and BK = wk,.

The next step that is carried out is to evaluate the
Fourier coefficients J,, and p, using the static current and
charge distributions. The Green’s functions at the first
frequency increment (typically we use steps of 1 GHz or 2
GHz) are approximated by using the static value of «,,
and the following integral equations are solved:

2](;1G}(x,x’).]_,r(x’)dx’=1+S(x) (302)

2/0165(x,x')p(x')dx'=1+s(x) (30b)

where S(x) is the correction to the static boundary value
for the potentials as given by (8). From the continuity
equation, we obtain

w,J

n"xn

0.)-

Also, the Green’s function for A, has the same Fourier
coefficients G,, but with sinw,x replacing cosw,x. By
using these relations, the integral in (8) is readily evaluated

= jo (ol =

1207 kip,
e ¢ 8

kw(n)Shy (n)
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to give
cosw,x —1 .
S(X) = Z G?n——_w—i——(pn - Ke‘]zn)' (31)
n=1,3,-- n

Note that p,—«,J,, is proportional to the nth Fourier
coefficient of J, and is therefore quite small. The Green’s
functions G} and G at the first iteration (denoted by the
superscript 1) are expressed as

G}:G?+(G11~Gto)'

The first part is the static Green’s function or dominant
part, while the second part is a correction and is repre-
sented in a Fourier series form. By means of this tech-
nique, it turns out that good numerical convergence is
obtained by using only 30 terms in the Fourier series for
the correction term and also for S(x). The integral equa-
tions in (30) are solved, and new values of I, and Q, at the
first frequency increment are thus obtained. A corrected
value of x, may then be found using the same relation
given earlier by (28).

The iteration is now repeated by calculating a more
accurate value for S(x) using the new value of «, and new
computed values for p, and J_,. The new value of «, is
also used in the Green’s function G} and G# for the
second iteration. These Green's functions are expressed in
the form

G}=G!'+(G*-G}).

The first term is known from the earlier computation and
the second term is a rapidly converging Fourier series
correction term. This iteration procedure is repeated until
successive values of x, do not change by more than 0.1
percent. When convergence has been obtained, the
frequency is incremented to the next value. Linear extrapo-
lation is used to obtain a good initial value for k, at the
new frequency. By this means, the iteration converges very
fast, and typically 1, 2, or 3 iterations are all that is
required at each frequency when the frequency increment
is 2 GHz. A smaller frequency increment requires fewer
iterations at each new frequency.

At each frequency, the characteristic impedance of the
microstrip line is evaluated after a converged value of «,
has been found. The following definition for the character-
istic impedance Z, is used:

Z, = faEd 1[f“aq)+‘A d}
0 TOT *0 i Ir1% \ 0y el el
1 1 aA J (
= —+Jjw 32
Itor | €0 / '4) & )

where I, is the total z-directed current on the strip, and
the integral of E, is carried out at x=0 to obtain an
equivalent voltage across the line. The vector potential
function A4, can be evaluated in Fourier series form so that
(32) can be expressed as

1+

%= Infk, |

1,3--- "ekg + an W3(”)[W3n(”)3h3 (”)+ "Wl(”)Cha (n)

~ Sh, () }
wy(n)Shy(n)+w,(n)Ch, (n) }
(33)
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where I is the total relative value of the z-directed current
obtained from the solution of an equation like (30a) in the
last iteration at the frequency of interest. A total of 30
terms gives an accurate value for the sum in (33).

A computer program written in BASIC was developed
to implement the theory presented above. The techniques
used, such as extracting the dominant parts of the Green’s
functions and evaluating the important parts of the in-
tegrals analytically, resulted in a robust and numerically
efficient program. The program, when run on an ATT-6300
(clock frequency at 8 MHz) in compiled form, will
completely characterize a given microstrip line with an
anisotropic substrate (effective dielectric constant «,,
characteristic impedance Z,, current and charge expansion
coefficients I, Q,) in 2-GHz frequency steps from 0 to 30
GHz in less than 2 minutes. The numerical accuracy is
+0.25 percent and only single precision arithmetic is
required.

Most of the computations need to be done only once.
For example, the sum over m in (23) is carried out only
once. Likewise, the basic integrals

fw/2cos(wnsin0)0052i0d0, i=0,1,2,3

0

for the Fourier coefficients need to be evaluated only once.
These integrals were evaluated by quadrature, which is as
efficient as expressing them in terms of Bessel functions
and using Bessel function routines. Since the Green’s func-
tions are expressed in terms of those evaluated earlier plus
correction series, they can also be evaluated with a mini-
mum of computational time. All of these features contrib-
ute to the efficiency of the computer program. In the
spectral-domain approach, very little analytical pre-
processing of the formulas appears to be done, even though
in principle the dominant parts of the Fourier transforms
could be extracted and evaluated analytically, For pro-
grams that are to be run on personal computers, it is well
worth the effort to do as much analytical simplification as
possible since it compensates for the inherently slower
speed of personal computers.

VL

Kuester and Chang have shown that the numerical
results for microstrip effective dielectric constant by vari-
ous authors differ by significant amounts due to numerical
approximations and limitations of the procedures used
f16]. It is important to verify, as far as possible, the validity
and accuracy of the numerical results obtained from a
computer program.

We have checked our results against those given by
Jansen [2] (Fig. 2 and Fig. 6 data) and they agree to within
the accuracy that data can be read from the graphs, with
the exception of the two narrowest strips considered by
Jansen. For 2W/H = 0.0625, our results for the effective
dielectric constant are 3.5 to 4.5 percent larger. For 2W/H
= 0.09375, our results are 1.5 to 2.3 percent larger. We
have checked our static values with Wheeler’s formula and
get agreement to better than 1 percent.

NUMERICAL RESULTS
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Fig. 2. Effective dielectric constant for a sapphire substrate
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Fig. 3. Characteristic impedance with a sapphire substrate.
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Fig. 4. Effective dielectric constant for Epsilam-10 substrate.

Our results also agree to within the accuracy of reading
graphical data (better than 0.5 percent) with those of
Kuester and Chang [10] (Figs. 2-5). For anisotropic sub-
strates such as sapphire, our results agree very closely with
those of El-Sherbiny [8] (Figs. 2-4). The results obtained
by Kitazawa and Hayashi [4] show a small disagreement
with those of El-Sherbiny for wide strips at the higher
frequencies. Our results support those obtained by
El-Sherbiny. The results for «, given by Tsalamengas ef al.
[17, table I1I, 6, = 0°] for a sapphire substrate with x = 9.4,
k,=11.6, and 2W/H = 2 appear to be in error (too large)
by about 5 percent at the lower frequencies. An extrapola-
tion of their data to zero frequency does not give results
that agree with the static values which are easy to compute

-with good accuracy [18]. Tsalamengas has recomputed the

low-frequency values using more basis functions and has
verified our low-frequency values, which at zero frequency
agree with those obtained by Owens et al. [18]. Thus,
based on the available published data, it is believed that
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Fig. 6. Effective dielectric constant for boron nitride substrate.

the numerical results obtained from the numerical imple-
mentation of the theory developed in this paper are accu-
rate and reliable.

Fig. 2 shows the effective dielectric constant &, (called
EKAP in the figures) for a sapphire substrate with x = 9.4
and k,=11.6 and several values of 2W/H. Fig. 3 shows
the corresponding characteristic impedance. The substrate
thickness used in the computations was 1 mm, but the data
can be applied for other thicknesses by scaling the
frequency by the factor 1/H, where H is the actual
thickness in mm. For example, if H=0.5 mm, the
frequency in Figs. 2 and 3 cover the range 0 to 48 GHz.

The dispersion data for Epsilam-10 with k=13 and
k,=10.3 are shown in Figs. 4 and 5. At zero frequency
and for 2W/H = 2, we obtained k, = 7.57, Z, = 32.20. The
corresponding values given by Alexopoulos [6, table III]
are 7.54 and 32.16, which agree to better than 0.4 percent
for k, and 0.15 percent for Z,. For 2W/H =9, the results
given by Alexopoulos for k, is 3.7 percent lower than ours.
For an isotropic substrate with x =10.3, our results again
are from 0.6 to 3 percent higher than those given by
Alexopoulos depending on the strip width. Our values for
the characteristic impedance are also slightly larger but the
difference is less than 1 percent. It should be noted that
the results given by Alexopoulos are for the case of a
conducting shield a distance 9H above the substrate. When
the shield is moved to a distance of SO0H above the
substrate, the results are in agreement with ours [19]. Pozar
has also verified some of our computed results [20].

Figs. 6 and 7 give dispersion data for boron nitride with
k=5.12 and x, = 3.4. The dielectric constant of GaAs has
been measured as 12.9 at a wavelength of 5 mm [21]
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Dispersion data for GaAs using k=129 are shown in
Figs. 8 and 9. Alumina has a dielectric constant in the
range 9.6 to 10.1 depending on composition. A typical
quoted value is 9.7 for alumina in the microwave band
[22], although measurements on alumina 995 at 60 GHz
show a value of 9.6 [23]. We have used a value of 9.7 to
compute the dispersion data shown in Figs. 10 and 11.

Fig. 12 shows a plot of the effective dielectric constant
EKAP versus the dielectric constant kappa of the substrate
for three line widths and three frequencies, namely 2W/H
=0.5,2,and 6 and f =0, 10, and 20 GHz with H =1 mm.
The relationships are, remarkably, almost linear and the
slopes of the lines are almost equal (10-15 percent less at
/=0 and within a few percent at f=20 GHz) to
EKAP /kappa. This property may be used to obtain the
effective dielectric constant for a given microstrip line and
frequency with a substrate whose dielectric constant differs
by several percent from that for which data are available.
For example, with 2W/H =2, f =10 GHz, and x =10, the
computed value of «, is 7.98. From this information, we
can estimate k, for a similar line at the same frequency but
with an alumina substrate having k = 9.7. The estimate is
given by

K, =7.98—0.3%(7.98/10) = 7.7406

which is within 0.1 percent of the computed value 7.733. A
similar estimate at f=0 gives x,=6.936, which is very
close to the computed value 6.946.

Even though a large number of papers have been pub-
lished on microstrip dispersion, there are very little actual
data that have been published. An extensive set of tables
giving the effective dielectric constant, characteristic im-
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pedance, and the current and charge expansion coefficients
for a wide range of 2W/H values, substrate dielectric
constants, and frequencies has been prepared [24]. The
frequency range covered is 0 to 30 GHz for H=1 mm.
Above 10 GHz, thinner substrates would normally be used
and the frequency must be scaled accordingly by dividing
by the actual value of H in mm that is used. For PTFE
material filled with glass fiber or woven glass, the aniso-
tropy ratios used were those given by Laverghetta [25]. The
GW-BASIC program is also given in [24].

VIIL.

A numerically efficient iteration-perturbation theory
based on potential theory for analyzing microstrip disper-
sion was developed. The theory allows for anisotropic
substrates. Since many substrate materials are anisotropic,
it is important to include anisotropy if accurate design
data are to be obtained. The theory was implemented by
execution on a personal computer and will completely

CONCLUSIONS

7
3 1 | 'l
4 6 8 10
K '
Fig. 12. Effective dielectric constant versus substrate dielectric
constant.

characterize a microstrip line in 2-GHz frequency incre-
ments from 0 to 30 GHz in less than 2 minutes. By using
the INLINE CODE compiler and an 8087 coprocessor, the
execution time is reduced by a factor of 2.4.

Work is currently under way to extend the method to
slotlines and coupled microstrip and slotlines.
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