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Microstrip Dispersion Including
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BRIAN E. KRETCH, MEMBER, IEEE, AND ROBERT E. COLLIN, FELLOW, IEEE

Abstract — A perturbation-iteration solution based on potential theory is

developed for determining the effective dielectric constant, characteristic

impedance, and current-charge distribution on a microstrip transmission

line with isotropic and anisotropic substrates. The numerical implementa-

tion of the theory is described and is suitable for use on a personal

computer. Computed data for several common substrate materials are

included.

I. INTRODUCTION

T

HE DISPERSIVE properties of microstrip transmis-

sion lines have been described by a number of authors,

and this includes some work on anisotropic substrates as

well. A very popular approach is based on the expansion

of the fields in terms of hybrid (longitudinal section)

modes, the formulation of an integral equation in terms of

the unknown currents on the strip, and the solution of the

equation in the spectral domain using Galerkin’s method

[1]-[5]. For comprehensive reviews, see [6] and [7]. This

approach requires finding the roots of a transcen-

dental dispersion equation. For wide strips, the modified

Wiener-Hopf technique can be utilized quite effectively

[8]. The analysis of microstrip lines has also been carried

out using potential theory [9]–[11].

In this paper, we present a new perturbation-iteration

solution based on potential theory that leads to a very

efficient computation of the dispersive properties of a

microstrip line on isotropic or anisotropic substrates. The

initial development of the perturbation-iteration solution

for isotropic substrates was carried out as a thesis project

[12], [13] (an unfortunate sign error in the computer pro-

gram makes the numerical results given in [12] and [13]

increasingly inaccurate as the frequency is increased). The

theory presented in this paper is an improved version and

is also generalized to allow for anisotropic substrates. Our

potential theory includes the use of all three components

of the vector potential function, and this leads to a number

of simplifications in the final pair of uncoupled scalar

integral equations that must be solved.
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Fig. 1. A microstrip transmission line.

II. FIELD EQUATIONS

The microstrip line under consideration is shown in

Fig. 1. It consists of a conducting strip of width 2 W

located on a substrate of thickness H on a ground plane.

Two conducting sidewalls are placed at x = + A in order

to facilitate the analysis through use of Fourier series.

When numerical results are computed, ,4 is set equal to

the larger of 15 W or 15H, for which case the sidewalls

have a negligible influence on the characteristics of the

microstrip line. The substrate is assumed to be anisotropic

with a dielectric constant Ky in the direction perpendicular

to the substrate and K in the x and z directions. All field

quantities have a time dependence eJ”t and a z clepen-

dence e ‘JPZ and these common factors are suppressed after

the basic equations have been developed.

The equations for the vector and scalar potentials are

developed initially by letting Ky and K be functions of y.

An important feature of this approach is that it requires

the vector potential A to have all three components

AK, AY, AZ. In addition, we keep the scalar potential @ as

an explicit part of the solution. By including an AY compo-

nent, all of the potential functions can be continuous

across the air–dielectric interface. In the potential theory

referred to earlier, A, is chosen as zero with the conse-

quence that the potentials must all be discontinuous across

the air–dielectric interface [9]–[11]. Thus, the potential

theory that we use is a more natural one and leads to a

very efficient iterative theory for evaluating microstrip

dispersion. It also has the advantage of eliminating the

coupling between A= and @ at the air–dielectric interface.

The dielectric constant tensor is represented as

where Z is the unit dyad. We let B = v x A and then from

Maxwell’s equation v x E = – jav x A we obtain

E=–juA– V@. (2)
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From the equation v x B = j@poEoii. E +po.l=v X v

X A we find, upon using (2), that

VV”A –V2A = jutOpO [ – jUKii-Kv’@ -jti(KY-K)

1.Ayay–(Ky –K)V@. a,yay +poJ

( )-(KY - K) jupoco~ - k~AY a,

dK
+ jcdpoto@-av+po J.

(?y

The two gradient terms are now equated to yield the

conventional Lorentz condition and the following equa-

tions for the components of A:

VA = ‘jti~060K(~)@ (3a)

v 2A=+ Kk;Az = – poJ, (3b)

V 2AX+ Kk;AX = – poJX (3C)

(?K da
V2AY+ K,,k~Ay = – jupOto@— + j@pOCo(KY– K)——

ay ay

[ 1=jwoco(K, -K)~+@(fl)(K -l)8(Y -H) (3d)

where we have taken the step change in K(y) at y = H
into account and put dK/dy = (1 – K)8(y – H), with

8( y – H) being the delta function. By using Gauss’s law

v. ( F. E ) = p/co, (2), and the Lorentz condition, the fol-

lowing equation for @ is obtained

~. (4)p +jti(Ky -l)8(y- H) Ay-jU(Ky-K) ~y___

Eo

In (3) JX and JZ are the components of the current density

on the microstrip, and in (4) p is the charge density. At the

air–dielectric interface, all of the potential functions are

continuous across the interface. In addition, dAx/i3 y and

dAz/dy are also continuous across the interface. From the

differential equations (3d) and (4) we find, by integrating

over a vanishingly small interval along y centered on the

interface, that

aAy +
— = jwpoco(Ic-l)@(H)
aY -

+ a~ a~
K,(Y); ‘~ –KY% _

— +

(5a)

—— –E+@(KY-l)~@) (5b)
60

where the negative sign refers to y just below the interface

and the postive sign refers to y just above the conducting

strip. In addition to these discontinuity conditions, the

boundary conditions on the perfectly conducting infinitely

thin microstrip are

EZ=OoruAZ=fl@ (6a)

;1 @

EX=Oor–juAX=2; . (6b)

One additional relationship that will lbe used comes from

integrating the continuity equation

v,*J= – jup

across the strip from Y = – W to W, it is

~I,o, = (.oQ

where ~?ro* is the total z-directed current

total charge per unit length on the strip.

The integral of (6b) on the strip gives

(7)

and Q is the

@(x, H) = – j@~xAXdx+@(O, H)

which can be expressed in the form

co@(x, H) =1 —j”tipoco ~x~w G(x,x’)J.(x’)d~’dx (8)
o –w

for O < x <W. In (8) we have set @~O,H) equal to 1/6 o.

The second term in (8), involving the integral of JX and the

Green’s function G for (3c), is a small perturbation to the

boundary condition for @ since at the lower frequencies,

and in particular for narrow strips, JX is very small.

Numerical computations show that even for extreme con-

ditions this term is not large. For example, for H =1 mm,

K = Ky =10, and 2W = 10H, this term represents no more

than a 50-percent decrease in the value of @ from x = O to

x = W at 26 GHz. For all practical microstrip lines within

the useful frequency range, it is a much smaller perturba-

tion term and is treated as such in the iteration-perturba-

tion theory that is developed in this paper. For 2W/H = 6

and K = 12, JY causes an 8-percent decrease in @ at x = W
for j =10 GHz. For narrower strips and smaller values of

the dielectric constant, the decrease is less. For 2W/H< 1,

the effect of JXcan be neglected, even at 20 GHz for H = 1

mm.

III. FORMAL SOLUTION

The current J, and charge p can be represented

following Fourier series:

m

JZ(X) = ~ JnCOSWnX

n=l,3.

‘x

p(x) = ~ pncc)swnx
~= 1,3...

where

21

J
J.=– Jz(x)cOSW~XdX

ao

pn = qlp(x)cosw,mxdx.
ao

by the

(9a)

(9b)

(lOa)

(lOb)

At this point normalized dimensions have been introduced

so that W =lm, a = A/W, and of= H/W. Also, w. =
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n 7T/2a in (9) and (10). The potentials are also represented

by Fourier series in the form

@= ~ @n(y) coswnx (ha)
~= 1,3...

Az= : A,n(y)coswn.x (llb)
~= 1,3...

A,= ~ Ayn(y)coswnx (llC)
~= 1,3...

Ax= ~ AX.(y) sinw.x (lId)
~= 1,3...

where the factor e ‘J~z has now been suppressed. The

equations for @ and AY must be solved simultaneously. In

view of the boundary conditions that must hold at y = O,

we can assume that

Q.= C sinh yy AY. = D coshyy y<a

and substitute these into (3d) and (4). It is then readily

found that solutions exist for two values of y given

YIn=(~2-K~; +W;)1z2

()

K “’(fj’ - Ky~; + W;)l’2.
Y’n = ;

P

by

(12a)

(12b)

The general solutions for O. and AY~ are now chosen as

(

Cl sinhyl~y + Cz sinhy2.y, Y G a
on=

c3e-YnY, y>a

{

Dlcoshyl~y + D2coshy2ay, y < ~
A.vn=

Qe-Y,Y y>a!

where

Yn=(B2–k; +wn~)l’2.

The potentials are continuous at y = a and satisfy the

discontinuity conditions given by (5). The use of these

boundary conditions and the requirement that the solu-

tions satisfy the coupled differential equations lead to the

solution

fo~n(~) =
[

wl(n)w3(n)Sh3 (n)

w3(n)Sh3(n) +KwI(n)Ch3 (n)

G2 needed to solve for @ in terms of p after eliminating

Ay. When kO = O, we have

p. sinh w#
Cod?n(a) =

( r )

(15)
w. sinh w# + KKY cosh W,zd

where a’= ( K/ Ky)l/2a. The result shown in (15) expresses

the prope~ty that the potential @ for an anisotropic sub-

strate is the same as that for an isotropic substrate with

dielectric constant (KKY)l/2 and normalized thickness

a’[14]. However, A= is still the same as for a line with

normalized height a for the strip, so the zero frequency

inductance per unit length must be found for the unscaled

line. This can be expressed in terms of the capacitance of

the air-filled unscaled line.

The solution for A,n is much easier to find and is, at

y=(x,

AZ. =
PoJznsh2 (~)

(16)
wl(n)Sh2(n) +w2(n)Ch2 (n)

which reduces, for kO = O, to

sinh w.a
AZ. = pOJ,ne-wn”

Wn “
(17)

The coefficient of POJZ. is the n th Fourier coefficient of

the Green’s function GI needed to solve for A= in terms

of J=.
At y = a, the Green’s functions GI and G2 have the

representations

G,(x, x’)=: _:, G,nCOSWnXCOSWnX’, i=l,2,
n— ,

(18)

where Gl~ is the coefficient of p ~J,n in (16) or (17) and

G2. is the coefficient of p. in (13) or (15).

The Fourier series solution for AX can be found directly

from the Lorentz condition (3a), so JX does not need to be

solved for explicitly. An alternative procedure is to use the

continuity equation to find JX.

k~Sh2 (n)
+ 1P.

wl(n)Sh2(n )+w2(n)Ch2 (n) ~’+w~’
(13)

where the following shorthand notation has been intro-

duced:

W(n) =Yn Sh, (n) =sinhw, (n)a

%(n) =Yln Ch, (n)= coshwz(n)a

w3(~) ‘Y3H i=l,2,3.

We also use

fl’ = ic,k; (14)

where K, is the effective dielectric constant. The coefficient

of p. in (13) is the n th coefficient of the Green’s function

IV. STATIC GREEN’S FUNCTIONS

In the iteration solution to be presented in the next

section, we will need the static Green’s functions G; and

G$. In this section, we sum the dominant or the singular

part of the series for the G: into closed form, which can

then later be integrated exactly as the dominant part of the

integral equations that will be set up for p and J,.
The static Green’s function G!, at y = a, is given by

2c0s w~xcos w~x’(l – e-’wn”)
G~(x, x’) = ~ . (19)

~=1,3 . . . n~
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The two series can be summed to give [15]

( ) [[
cosh; +COS ;(x ‘X’) cosh; +COS~; (X + X’)

G:= – &ln tan~lx– x’ltan~lx+x’l – &ln

1]

(20)
cosh; ‘COS; (X – x’) cosh; ‘COS;; (X +x’) “

We now assume that a is set equal to the larger of 15 or

15a, in which case a/a and (x ~ x’)/a are small. Hence,

we can use the small argument approximations for the

cosine and hyperbolic cosine terms and also expand the

logarithm to obtain

G:= – &lnlx2–x’21

+ -&ln([(2a)2+(x - X’)2] [(2a)2+(x +x’)’] ] -~.

(21)

The dominant term in a/a has been retained in (21) in

order to determine how large a has to be before the

sidewalls have a negligible effect. The numerical results

verify the condition given after (20).

The static Green’s function G; at y = a is given by

2 cos Wnxcos Wnx’sinh w#
G;(,x, x’) ~ (22)

.D1 ~... nm(sinhw.a’-t Kgcoshw#)

where Kg = ( KKY)l/2 and a’= (K/Kv)l/2a. The above series

may be expressed in the form

2c0s w~xcosw~x’(l – e-2wn”’)
G;(x, x’) == ~

~=1 3,., (~g+l)n9r(l+ qe-2wna’)

where q ==(K8 – l)/(Kg + 1). We now expand the factor
(1+ ~e-zw},a -1) into a power series and can then carry out

the summation over n for each term to obtain

sufficient, while for strips as wide as 10H and with Kg= 12,
a total of 45 terms were required.

V. SOLUTION BY ITERATION

In the iteration method the current and charge densities

and the effective dielectric constant K. are first found at

zero frequency. For this case c#1 is set equal to 1 on the

strip, and A,,/p ~ is also set equal to 1 on the strip, where

A,, is a reference value for the vector potential. The

integral equations to be solved are

2/lG~(x, X’)~Z,(X’) dx’=1 (24a)
o

J2 lGj(x, x’)p(x’) dx’=1. (24b)
o

The current JZ is expanded in terms c}f four basis functions

in the form

10– 11T2(x)+ 12T4(X)– 13T6(X)
JZ=

Js
(25)

where T.(x) is a Chebyshev polynomial. A simple equiv-

alent power series in x 2n was also tried but the resultant

matrix was ill conditioned in that case. By using the

Chebyshev polynomials, the matrix cleterminant was larger

by a factor of about 100. In the numerical evaluation, the

r m’ T -1

Icosh(rn +l); +cos; (x+x’)

x
cosh(rn +l)~-cos; (x+x’)

1

(23)

The alternating series represents a correction to the domi-

nant part of G: which is expressed in closed form. In the substitution x = sin O is made, in wlhich case

numerical evaluation of the integral involving G;, it was

established that truncating the series when the m th term J,(x) dx = (10 + 11COS26+ 13COS4(9+ l,cos60) dd. (26)

was smaller than 10-3 times the sum of the first m – 1
terms resulted in an insignificant error. For narrow strips A similar expansion for p is used with ‘coefficients Q.,

with Kg less than 5, it is found that 8 to 10 terms are n =0,1,2,3.
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By using the above expansion and substitution, we can

use the Schwinger transformation

COS2!3–COS26’
lnlx2–x’21 =lnlsin2d –sin20’l=ln

2

w 2cos2nOcos2n0’
=–ln4– ~ (27)

~=1 n

which enables one to carry out the integrals in (24) analyti-

cally for the dominant parts of G; and G:. The remaining

integrals are evaluated numerically, Equations (24) are

converted to matrix equations by using point matching at

the four points x = sin (2i + 1) m/16, i = 0,1,2,3. Test cases

using Galerkin’s method and the method of least squares

were also evaluated with essentially the same results, so the

final computer program adopted used point matching since

it requires somewhat less computational effort. The

numerical results show that 12 and Q2 are small and 13

and Q3 are almost negligible so four basis functions are

sufficient.

After the expansion coefficients 1. and Q. for p have

been found, the total current and charge on the strip are

given by 1~ = m-10 and Q~ = mQO. The total current is a

relative value, so we now multiply 1~ by a constant K and

enforce the two conditions (6a) and (7) to obtain

L@CA,r=/ko@ =~ = OpOCoK

and

~KIT = uQ,

which then gives

P2 Q.

k;
‘= Ke=—

IT
(28)

1/60 z
zo=—=—

K17 1~~
(29)

where Z= (pO/CO) 112=120m a and /lK = wKe.

The next step that is carried out is to evaluate the

Fourier coefficients J,. and p. using the static current and

charge distributions. The Green’s functions at the first

frequency increment (typically we use steps of 1 GHz or 2

GHz) are approximated by using the static value of K=,

and the following integral equations are solved:

/
2 lG;(x, x’).l=,(x’) dx’=l+ S(x) (30a)

o

2~1G; (x, X’)f2(X’) dX’=l+ S(X) (30b)
o

where S(X) is the correction to the static boundary value

for the potentials as given by (8). From the continuity

equation, we obtain

WHJX.=jCJ(KeJzn –pn).

Also, the Green’s function for AX has the same Fourier

coefficients Gl,, but with sin w~x replacing cos w~x. By
using these relations, the integral in (8) is readily evaluated

to give

S(X) = Z @
Cos Wnx – 1

w; (% - KeJ,_n). (31)
~= 1,3,...

Note that p. – KeJzn is proportional to the n th Fourier

coefficient of .lX and is therefore quite small. The Green’s

functions G~ and G; at the first iteration (denoted by the

superscript 1) are expressed as

G}= G~+(G}– G)).

The first part is the static Green’s function or dominant

part, while the second part is a correction and is repre-

sented in a Fourier series form. By means of this tech-

nique, it turns out that good numerical convergence is

obtained by using only 30 terms in the Fourier series for

the correction term and also for S(x). The integral equa-

tions in (30) are solved, and new values of I. and Q. at the

first frequency increment are thus obtained. A corrected

value of K, may then be found using the same relation

given earlier by (28).

The iteration is now repeated by calculating a more

accurate value for S(x) using the new value of K= and new

computed values for P. and J=.. The new value of K, is
also used in the Green’s function G? and G; for the

second iteration. These Green’s functions are expressed in

the form

( 1)G;= G;+ G;–G~

The first term is known from the earlier computation and

the second term is a rapidly converging Fourier series

correction term. This iteration procedure is repeated until

successive values of K, do not change by more than 0.1

percent. When convergence has been obtained, the

frequency is incremented to the next value. Linear extrapo-

lation is used to obtain a good initial value for Ke at the

new frequency. By this means, the iteration converges very

fast, and typically 1, 2, or 3 iterations are all that is

required at each frequency when the frequency increment

is 2 GHz. A smaller frequency increment requires fewer

iterations at each new frequency.

At each frequency, the characteristic impedance of the

microstrip line is evaluated after a converged value of K,

has been found. The following definition for the character-

istic impedance 20 is used:

(32)

where lTo~ is the total z-directed current on the strip, and

the integral of E,y is carried out at x = O to obtain an

equivalent voltage across the line. The vector potential

function AY can be evaluated in Fourier series form so that

(32) can be expressed as

ZO=*{l+ x ‘;’” [ Kw1(n)Sh3 (n) S112(n)

T ~= 1,3... K,k~+w~2 w3(n)[w3H(n )Sh~(n)+ Kw1(n)Ch3 (n) – wl(n)Sh2(n )+w2(n)Ch2 (n) 1)
(33)
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where IT is the total relative value of the z-directed current

obtained from the solution of an equation like (30a) in the

last iteration at the frequency of interest. A total of 30

terms gives an accurate value for the sum in (33).
A computer program written in BASIC was developed

to implement the theory presented above. The techniques

used, such as extracting the dominant parts of the Green’s

functions and evaluating the important parts of the in-

tegrals analytically, resulted in a robust and numerically

efficient program. The program, when run on an ATT-6300

(clock frequency at 8 MHz) in compiled form, will

completely characterize a given microstrip line with an

anisotropic substrate (effective dielectric constant K,,

characteristic impedance ZO, current and charge expansion

coefficients 1., Q.) in 2-GHz frequency steps from O to 30

GHz in less than 2 minutes. The numerical accuracy is

t 0.25 percent and only single precision arithmetic is

required.

Most of the computations need to be done only once.

For example, the sum over m in (23) is carried out only

once. Likewise, the basic integrals

4(“’2cos w. sind) cos2iOdf3, i=0,1,2,3

for the Fourier coefficients need to be evaluated only once.

These integrals were evaluated by quadrature, which is as

efficient as expressing them in terms of Bessel functions

and using Bessel function routines. Since the Green’s func-

tions are expressed in terms of those evaluated earlier plus

correction series, they can also be evaluated with a mini-

mum of computational time. All of these features contrib-

ute to the efficiency of the computer program. In the

spectral-domain approach, very little analytical pre-

processing of the formulas appears to be done, even though

in principle the dominant parts of the Fourier transforms

could be extracted and evaluated analytically. For pro-

grams that are to be run on personal computers, it is well

worth the effort to do as much analytical simplification as

possible since it compensates for the inherently slower

speed of personal computers.

VI. NUMERICAL RESULTS

Kuester and Chang have shown that the numerical

results for microstrip effective dielectric constant by vari-

ous authors differ by significant amounts due to numerical

approximations and limitations of the procedures used

[16]. It is important to verify, as far as possible, the validity

and accuracy of the numerical results obtained from a

computer program.

We have checked our results against those given by

Jansen [2] (Fig. 2 and Fig. 6 data) and they agree to within

the accuracy that data can be read from the graphs, with

the exception of the two narrowest strips considered by

Jansen. For 2W/H = 0.0625, our results for the effective

dielectric constant are 3.5 to 4.5 percent larger. For 2W/H

= 0.09375, our results are 1.5 to 2.3 percent larger. We

have checked our static values with Wheeler’s formula and

get agreement to better than 1 percent.

n
a
5

~~
o 32

GHZ/H mm

Fig. 2. Effective dielectric constant for a sapphire substrate

i00

ET=l
/ 0.25 =2W/H

80
/ 0.5

60 ..-10

40 —--20

20kdE25E3E4
0481216 20 24 28 32

GHZ/H mm

3. Characteristic impedance with a sapphire substrate.

‘ L—U.JUJLUUJ
O 4 8 12 16 20 24 28 32

GHZ/H mm

Fig. 4. Effective dielectric constant for 13psilam-10 substrate.

Our results also agree to within the accuracy of reading

graphical data (better than 0.5 percent) with those of

Kuester and Chang [10] (Figs. 2-5). For anisotropic sub-

strates such as sapphire, our results agree very closely with

those of E1-Sherbiny [8] (Figs. 2–4). The results obtained

by Kitazawa and Hayashi [4] show a small disagreement

with those of E1-Sherbiny for wide strips at the higher

frequencies. Our results support those obtained by

E1-Sherbiny. The results for K, given by Tsalamengas et al.
[17, table 111, 00= 0°] for a sapphire substrate with ~ = 9.4,

KY =11.6, and 2W/H = 2 appear to lbe in error (too large)

by about 5 percent at the lower frequencies. An extrapola-
tion of their data to zero frequency does not give results

that agree with the static values which are easy to compute

with good accuracy [18]. Tsalamengas has recomputed the

low-frequency values using more ‘baLsis functions and has

verified our low-frequency values, which at zero frequency

agree with those obtained by Owens et al. [18]. Thus,

based on the available published data, it is believed that
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Characteristic impedance with an Epsilam-10 substrate.

30 .

GHZ/H mm

Effective dielectric constant for boron nitride substrate.

the numerical results obtained from the numerical imple-

mentation of the theory developed in this paper are accu-

rate and reliable.

Fig. 2 shows the effective dielectric constant ~, (called

EKAP in the figures) for a sapphire substrate with ~ = 9.4

and Kv = 11.6 and several values of 2 W/H. Fig. 3 shows

the corresponding characteristic impedance. The substrate

thickness used in the computations was 1 mm, but the data

can be applied for other thicknesses by scaling the

frequency by the factor l/H, where H is the actual

thickness in mm. For example, if H = 0.5 mm, the

frequency in Figs. 2 and 3 cover the range O to 48 GHz.

The dispersion data for Epsilam-10 with K =13 and

KY = 10.3 are shown in Figs. 4 and 5. At zero frequency

and for 2W/H = 2, we obtained Ke = 7.57, ZO = 32.20. The

corresponding values given by Alexopoulos [6, table III]

are 7.54 and 32.16, which agree to better than 0.4 percent

for K, and 0.15 percent for ZO. For 2 W/H= 9, the results

given by Alexopoulos for K, is 3.7 percent lower than ours.

For an isotropic substrate with IC= 10.3, our results again

are from 0.6 to 3 percent higher than those given by

Alexopoulos depending on the strip width. Our values for

the characteristic impedance are also slightly larger but the

difference is less than 1 percent. It should be noted that

the results given by Alexopoulos are for the case of a

conducting shield a distance 9H above the substrate. When

the shield is moved to a distance of 500H above the

substrate, the results are in agreement with ours [19]. Pozar

has also verified some of our computed results [20].

Figs. 6 and 7 give dispersion data for boron nitride with

IC= 5.12 and KY = 3.4. The dielectric constant of GaAs has

been measured as 12.9 at a wavelength of 5 mm [21].
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K Effective dielectric constant for GaAs substrate

Dispersion data for GaAs using K = 12.9 are shown in

Figs. 8 and 9. Alumina has a dielectric constant in the

range 9.6 to 10.1 depending on composition. A typical

quoted value is 9.7 for alumina in the microwave band

[22], although measurements on alumina 995 at 60 GHz

show a value of 9.6 [23]. We have used a value of 9.7 to

compute the dispersion data shown in Figs. 10 and 11.

Fig. 12 shows a plot of the effective dielectric constant

EKAP versus the dielectric constant kappa of the substrate

for three line widths and three frequencies, namely 2 W/H

= 0.5, 2, and 6 and ~ = O, 10, and 20 GHz with H =1 mm.

The relationships are, remarkably, almost linear and the

slopes of the lines are almost equal (10–15 percent less at

~= O and within a few percent at ~= 20 GHZ) to

EKAP/kappa. This property may be used to obtain the

effective dielectric constant for a given microstrip line and

frequency with a substrate whose dielectric constant differs

by several percent from that for which data are available.

For example, with 2W/H = 2, f =10 GHz, and w = 10, the

computed value of K ~ is 7.98. From this information, we

can estimate Ke for a similar line at the same frequency but

with an alumina substrate having K = 9.7. The estimate is

given by

K,= 7.98 –0.3 X (7.98/10) = 7.7406

which is within 0.1 percent of the computed value 7.733. A

similar estimate at j = O gives K, = 6.936, which is very

close to the computed value 6.946.

Even though a large number of papers have been pub-

lished on microstrip dispersion, there are very little actual

data that have been published. An extensive set of tables

giving the effective dielectric constant, characteristic im-
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pedance, and the current and charge expansion coefficients

for a wide range of 2~/11 values, substrate dielectric

constants, and frequencies has been prepared [24]. The

frequency range covered is O to 30 GHz for H= 1 mm.

Above 10 GHz, thinner substrates would normally be used

and the frequency must be scaled accordingly by dividing

by the actual value of H in mm that is used. For PTFE

material filled with glass fiber or woven glass, the aniso-

tropy ratios used were those given by Laverghetta [25]. The

GW-BASIC program is also given in [24].

VII. CONCLUSIONS

A numerically efficient iteration-perturbation theory

based on potential theory for analyzing microstrip disper-

sion was developed. The theory allows for anisotropic

substrates. Since many substrate materials are anisotropic,

it is important to include anisotropy if accurate design

data are to be obtained. The theory was implemented by

execution on a personal computer and will completely

“4 6 8 io

K

Fig. 12. Effective dielectric constant versus substrate dielectric

constant.

characterize a microstrip line in 2-GHz frequency incre-

ments from O to 30 GHz in less than 2 minutes. By using

the INLINE CODE compiler and an 8087 coprocessor, the

execution time is reduced by a factor of 2.4.

Work is currently under way to extend the method to

slotlines and coupled microstrip and slotlines.
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